小学数学六年级上教案
作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写才好呢?下面是小编为大家收集的小学数学六年级上教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学六年级上教案1设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
小学数学六年级上教案2设计说明
本节课的内容是在学生学过分数与除法的关系,分数乘、除法的意义,分数乘、除法应用题的基础上进行教学的,结合教材特点,教学按以下4个层次进行:
1.由倍数关系引出同类量的比。
结合两面长方形小旗的数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。
2.由倍数关系引出非同类量的比。
结合飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出路程与时间这两个非同类量的比。
3.概括比的意义。
以引出的几个比为例,说出比的意义,读、写法及比的各部分名称,并由计算比值的实例,引出“比值通常用分数表示”。
4.明确比与除法、分数的关系。
根据分数与除法的关系,引导学生归纳出比、除法、分数三者之间的关系。
课前准备
教师准备:PPT课件、学情检测卡
教学过程
⊙复习铺垫
1.某车间有男工5人,女工8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?
2.分数与除法有什么关系?(分数的分子相当于被除数,分母相当于除数)
设计意图:在结合生活实际复习两个同类量之间的倍数关系的基础上,进一步复习分数与除法的关系,为新知的学习做好铺垫。
⊙讲授新课
1.教学比的意义。
(1)教学同类量的比。
①用除法表示同类量之间的关系。
a.课件出示:杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。这两面旗都是长15cm,宽10cm。
b.讨论:怎样用算式表示这两面旗的长和宽的关系?(引导学生说出:可以求长是宽的几倍,或求宽是长的几分之几)
②用比表示同类量之间的关系。
a.引入比的概念:两面旗的长和宽的倍数关系还可以用“比”来表示。长÷宽=15÷10,宽÷长=10÷15,也可以说长和宽的比是15比10,宽和长的比是10比15。
b.简介同类量的比:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,所以两面旗的长和宽的比属于同类量的比。
(2)教学非同类量的比。
①用除法表示非同类量之间的关系。
a.课件出示:“神舟”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。
b.讨论:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(42252÷90)
②用比表示非同类量之间的关系。
对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,因为这里的42252km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的`关系。
小学数学六年级上教案3一、学生情况分析
本班共有学生56人, ……此处隐藏3029个字……还多 的货物。它驮着的货物重多少千克?
4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?
(2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?
(3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?
四、课堂小结。
小学数学六年级上教案7设计说明
列方程解答含有两个未知数的问题属于较复杂的方程问题之一,主要引导学生掌握根据两个未知数的和或差与倍数所形成的数量关系进行列方程解决的方法。针对本节课的教学重点和难点做了以下设计:
1.本设计遵循学生的认知规律,尊重学生已有经验,从学生熟悉的篮球比赛情境入手,既激发了学生学习的兴趣,又为新课的展开奠定良好的情感基础。
2.教学中紧紧抓住“下半场得分只有上半场的一半”这个已知条件,引导学生自主理解、分析问题,理清题中的数量关系,根据数量关系列出不同的方程并解答,培养学生思维的发散性。
3.在解题的过程中放手让学生独立思考并解答,选择解题最佳方案。给学生创造一个轻松愉快的学习氛围,培养学生分析问题和解决问题的能力。
课前准备
教师准备 PPT课件 学情检测卡
教学过程
⊙创设情境,引入新课
师:六(1)班和六(2)举行了一场别开生面的篮球赛。比赛结束后,老师根据比赛得分给六(1)班的全体同学出了一道数学题,你们想知道是什么题目吗?
生:想。
师:好,那下面我们就一起到六(1)班看看吧。(板书课题)
设计意图:通过创设学生感兴趣的篮球比赛情境,激发学生学习的欲望,为新课的展开做好铺垫。
⊙师生合作,探究新知
1.课件出示教材41页例6情境图。
六(1)班在与六(2)班的篮球赛中,六(1)班全场共得了42分。其中下半场得分只有上半场的一半。上半场和下半场各得多少分?
2.获取数学信息。
请同学们认真读题,找出已知条件和所求问题。
(已知条件:全场共得了42分,下半场得分只有上半场的一半。所求问题:上半场和下半场各得多少分?)
3.理解题中存在的数量关系。
(1)理解“下半场得分只有上半场的一半”的意思。
①学生小组讨论,理解语句的意思。
②汇报讨论结果。
预设
生1:下半场得分=上半场得分×。
生2:上半场得分是下半场得分的2倍,即上半场得分=下半场得分×2。
(2)根据已知条件列出等量关系式。(学生独立思考后汇报)
关系式1:上半场得分+上半场得分×=全场得分。
关系式2:下半场得分×2+下半场得分=全场得分。
4.根据等量关系式列方程解答。
(1)根据数量关系,学生尝试解答。
(2)汇报。
方法一 根据关系式1解答。
解:设上半场得x分。
x+x=42
x=42
x=42
x=28
28×=14(分)
方法二 根据关系式2解答。
解:设下半场得x分。
2x+x=42
3x=42
x=14
42-14=28(分)
(3)检验。
①师:怎样才能知道自己的结果是否正确呢?
(引导学生说出不同的检验方法)
预设
生1:把上半场和下半场的得分加起来,如果正好是全场的42分,说明正确。
生2:用下半场的得分除以上半场的得分,如果正好是上半场的一半,说明正确。
……
②学生按照检验方法,检验自己的计算结果。
小学数学六年级上教案8教学目标
1使学生认识条形统计图,知道条形统计图的意义和用途
2了解制作条形统计图的一般步骤,初步学会制作条形统计图
教学重点
掌握制条形统计图的一般步骤,能看图准确地回答问题
教学难点
制条形统计图的第(2)、(3)步,即分配条形的位置和决定表示降水量多少的单位长度
教学步骤
一、铺垫孕伏
我们学过简单的数据整理,统计数据除了可以分类整理制成统计表外,还可以制成统
计图,用统计图表示有关数量之间的关系,比统计表更加形象、具体,使人一目了然,印象深刻常用的统计图有条形、拆线和扇形统计图(用投影器逐一显示)五年级的时候,我们已初步认识了条形图,这节课我们继续学习条形统计图(板书课题:条形统计图)
二、探求新知
(一)介绍条形统计图的意义及特点
意义:条形统计图是用一个单位长度表示一定数量,根据数量的多少画出长短不同的
直条,然后把这些直条按照一定的顺序排列起来
特点:从图中很容易看出各种数量的多少
教师提问:
l、图中统计的内容是什么?
2、图中画有两条互相垂直的射线,请你看看水平射线和垂直射线分别表示什么?
3、每个车间多少人?哪个车间人数最多?哪个车间人数最少?
(二)教学制作条形统计图的方法。
教学制作方法,师边示范边讲解
①根据图纸的大小,画出两条互相垂直的射线
教师讲述:要制的统计图有年份和降水量两方面的内容,需要用两条射线来表示
先画一条水平的射线(向右)表示年份,再画一条与水平射线垂直的射线表示降水量
教师说明:水平射线下面及垂直射线左面都要留有一条空白,因为水平射线下面要注明每个直条所表示的内容,垂直射线旁要注明各直条的数据,两条射线不能画在图纸的中间部位,因为那样会因高度不够画不下,或排不下五个直条
②在水平射线上适当分配条形的位置,确定直条的宽度和间隔
教师提问:例1的统计表中有几个年份?那么图中要画几个直条?
③在垂直射线上根据数的大小具体情况,确定单位长度表示多少
教师讲述:年降水量最高的数据是1005毫米,垂直射线的高度要略高于最大的数量在垂直射线上方要注明单位
④按照数据的大小画出长短不同的直条
教师讲述:为了准确地表示各个数据,还应在每个直条的顶上注明数量
(三)引导学生看图分析
1、哪一年的降水量最多?是多少毫米?(1998年降水量最多,1005毫米)
2、哪一年的降水量最少?是多少毫米?(1999年降水量最少,670毫米)
3、最多年降水量是最少年降水量的几倍?(1005670,是1。5倍)
教师提问:对照统计图和统计表说一说,用哪种方式表示的数量关系更直观?